
o(V
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMOAIM-138

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-250

PROGRAM SCHEMAS WITH EQUALITY

BY

ASHOK K. CHANDRA

ZOH^R MANNA

SPONSORED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

DECEMBER 1971

■»«•1

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

Raproduced hy

NATIONAL TECHNICAL
INFORMATION SERVICE

DBrnritmoN gTATEMiafr A

Approved for public release;
Distribution Unlimited

n

BEST
AVAILABLE COPY

PROGRAM SCHEMAS WITH EQUALITY

by

Ashok K. Chandra and Zohar Manna

Computer Science Department

Stanford University

We define a flowchart schema as being a program
with the followinö features: it has a finite
number of program variables dencted by y^y«
a finite number of uninterpreted function symbols
fl' 2,-.. (which may be combined with the variables

to fora terras) and a finite number of Predicate
symbols denoted by p ,p,

'1^2' Some o? tht func-
tion symbols may be zero-ary. These stand for
individual constants, and are denoted by
a;L,a2,... . A statement in the program mr.y be:

(a) an assißnment statement of the form

where t is any term,
of the form

(b) a predicate statement

— Pi^i'V •••'V then 52*° \ else poto L2

where t,...,t nre tenns and ■ L1'L2
are labels.

Abstract

*• discuss the class of procram schemas
augmented with equality tests, that is, tests of
equality between terras.

in, J™+heJir5! SSS 0f the ***** « discuss and illustrate the -power" of equality tesio. it
turns out that the class of proGram schemas with
equality is more powerful thiji the "maximal"
classes of schemas sucgested by other invest!-
gators.

+H A1*?*!* SeCOnd *** ot the PaP61, *• discuss
the decision problems of program schemas with
equality, it is shown for example that while the
decision problems nomally considered for schemas
(such as halting, divergence, equivalence,
isomorphism and lYeedom) are solvable for lanov
schemas, they all become.unsolvftble if general
equality tests are added. *. suggest, however,
limited equality tests which can be added to
certain subclasses of program schemas while
preserving their solvable properties.

1. Introduction

In recent years the study of schemas has been
widely pursued in an attempt to understand the
power of programmlrg languages. In the study of
program schemas, the functions and predicates
allowed are usually considered to be uninterpreted
symbols. The reason for this is that very simple
interpreted programs yield all the partial recur-
sive functions, and therefore interpreted w&mm
do not provide insight into the difficulty in
programming; e.g. the difference between the
essentially iterative nature cf Fortran and the
recursive structure of Algol or PL/1.

Earlier works in this area, e.g. lanov
U'/OJ, Rutledge [l^Jt], Patcrson [19'.7, 1068]
and Luckham, Park and Paterson [1970] ecsentlally
considered flowchart schemas, and emphasized the
decision problems for Schemas, viz. halting,
diver/jonoe, equivaj-ncv, etc. Most of the recrnt
papers, on the other hand, e.g. Paterson and
Hewitt [1971], strong [l'J71a], Constable and
Gries [1971] and üarland and Luckham [1971]
considered more powerful schemas, i.e., flowchart
schemas with additional programming features like
counters, recursion, push-down stacks and arrays;
and were concerened mainly with the problem of
translating program schemas from one class to
another.

Several formalisms have been considered in
the literature for the description of sche/ras.

SS^^^r^^^F^ät S " ^^ " ^ S-^ary of
authors and should not be lB*Wtad [Tn^JS^rZ«^^ '« ^^^ ^ thOCC 0f thc

or implied, of the Advanced Research I^olectsTencv or^ *% ^J?* *oli^B' •"*** expressed «-..; ...i ,-,.,_,. ,, . , ' =8 ACiency or the U.S. Governmont. Reproduced in the USA.

•1'-:■'-«
or (c) a tenninal statement, i.e., a START
statement, a HALT statement or a LOOP statement.
A schema has a unique START statement as its first
statement. Free use of goto statements is allowed;
and all statements except the START statement may
be labelled. In addition, for convenience and
readability we lescribe schemas usin,; ALGOL-like
features, e.g. wl.ile-stateraents and block struc-
tures. T.iese clearly do not add any "power" and
every such ALGOL-like program can be translated to
an oquivalrnl prograjn that uses goto-statements
instead.

Certain features can be added to flovhart
schemas, e.g. counters or arrays. A counter IF a
special variable that takes nonnecative integer
values. The operations allowed on a counter"are
addin.- one, cubtracting one, and tartlng for zero.
An array xc a one-dimensional semi-infinite secuence
o: variables that can be referenced by usinp »
counter to cubscript tlie array.

In addition, we also consider recursive Schemas.
A recursive schema is a set of recursive definitions
of functionals F,,F of the form rl'F2'

W ^ !£ P(t .1' .,t)
n' then t else t'

wher
t
"l"

P
,t

is an n-ary predicate symbol and
, t and t» are terms that may consist

of function symbols, functionals and the variables
yl' ••'y,]

«„„J-III-T i_ Zr i.^coawi rrujects Agency 0

Springfield, Vir.-inia

It ic quite curprisinui though, that people
hove co far neijlected to mention one of the most
useful features: equality tests between teims,
i.e., statcmontG of the form

if tj^ = tg then goto 1^ else goto !,„

where Va are terms and h'h arc labels.

The extension of program Schemas to allow
equality in quite natural, much as is the exten-
sion of first order predicate calculus to first
order predicate calculus with equality. The
analogy can be extended further in that in both
cases equality tests nan be treated as just any
other binary predicate but with a partial inter-
pretation which in turn Involves all other predi-
cates and functions used in the system. This
tends to be an unnatural approach to the treatment
of equality . Accordingly, we prefer the direct
approach of allowing the equality test to be a
basic operation in the system as is the operation
of assignment to a variable.

The reason for the omission of equality tests
in earlier papers can perhaps be traced to the
following fact. All Schemas discussed in the
papers mentioned above have one very important
common property: the behavior of a schema for all
interpretivtions can be characterized by the
behavior for n subset of all interpretations
viz. the Heriirand interpretations. We therefore
call all these Schemas Herbrand Schemas. To be
somewhat more precise, in a Herbrand schema, for
every interpretation there "corresponds" a Herbrand
interpretation that follows exactly tfte same path
of computation. Flowchart Schemas with equality
tests are in generei -".on-Herbrand Schemas, that is,
they may behave quite differently for Herbrand
and r.on-Herbrand interpretations. Consider, for
example, the simple schema:

START
if a = b then HALT else LOOP .

This schema halts for some interpretations and
loops for others. For all Herbrand interpretations,
however, it always loops. It is therefore a non-
Herbrand schema, and further, thfire can be no
Herbrand schema that is equivaleivt to it. A non-
Herbrand schema that has no equivalent Herbrand
schema is said to be an inherently non-Iierbrand sohena.

The use of equality tests does not necessarily
make a schema non-Herbrand. Example 0 in Appendix
A is an interesting instance of a Herbrand procram
schema with equality tests that has an equivalent
Herbrand program schema without any equality test
and also an equivalent non-Herbrand program schema
(which does have equality tests).

There are several other features which in
general give rise to non-Herbrand scheinas: the
use of quantified tests ia one such. Unfortunately,
it is not partially drxidable if a given schema is
a Herbrand schema. This result follows from the
fact that it is not partially solvable whether or
not any given flowchart schema (without equality
tests) diverges for every interpretation. Given
any flowchart r.-hema T , replace every HALT
statement by the statanent

if y=a then HALT else LOOP

where a is a new individual constant. Now the
new schema is a Herbrand schema if and only if T
diverge? for every interpretation.

In the rest of this paper, we illustrate the
power of equality tests (Section 2) and the decision
problems concerning program Schemas that use .them
(Section 5). For the sake of clarity we merely
give the "flavor" of the samples in the main part
of the paper, and we state the theorems without
proof. Details of the examples are given in
Appendix A (Section 1*) and the proofs are sketched
in Appendix B (Section 5). Detailed proofs can be
found in Chandra [1972b].

2. The "Power" of Program Schemas with Kiu&llty

The use of equality tests in program Schemas
raises an old question that has been asked several
times and never been answered to our complete
satisfaction — just what is a schema? We do not,
in this paper, propose to answer this questio. . but
we can indicate that much remains to be ctudied.
It has been suggested (Constable and Gries [1971],
Strong [1971b]), for example, that the class of
program Schemas with arrays might be a "maximal"
class of Schemas, i.e., for every schema there
exists an equivalent schema in this class. Now,
it may be that the class of array-schemas is indeed
maximal with respect to the Herbrand Schemas, but
nevertheless all Schemas in this class are Herbrand
Schemas. It has been shown, however, that there
exist certain Schemas using equality tests that ar>
inherently non-Herbrand. This means that the class
of program schanas with arrays and equality tests
is a strictly larger class.

A problem is said to be a Herbrand problem if
it can bp 1 jived by a Herbrand schema. A hori-
Herbrand problem is one that can only b« solved by
inherently non-Herbrand Schemas. The class of
program Schemas with arrays and equality tests can
solve certain non-Herbrand problems (which by the
definition of a non-Herbrand problem cannot be
solved if only arrays are allowed).

We first illustrate this point with two exam-
ples of non-Herbrand problems.

Example 1: Inverse of a unary function

Consider the following problem: "Given a
unary finction symbol f , a finite number of other
n-ary function synbols, n > 0 , and an input
variable x , write a program schema that under any

interpretation will yield a value of f (s) as
output. That is, it finds on element y that can
be e.-qpressed in terms of the given function symbols
and the input, variable x , such that f(y) ="x ;
if no such element exists, the schema loops forever".
This problem, which is essentially one of inverting
a given unary function, is non-Herbrand, the reason
being that if the input x is equal to the zero-ary
function a then it has no Inverse in any Herbrand
Interpretation, whereas for other i-vterpretations
it may have an inverse. It follows that the task
cannot be performed by any Herbrand schema. The
task carnot be performed by any Herbrand schema.
The task is, however, well within the capability of
flowc.iart Schemas with arrays and equality tests.
A schema in this class that solves this problem is
doscrlbod in Appendix A.

Example .': HrrhrP-nd-likc interpretations

Given a set of function and predicate synbols
of which there is at leart one zero-ary function.

wc say tüat an interpretation I for this set is
llortraM-llke jr the«« exists some Herbrand inter-
pretution II mmh tlv.t tliere is a i-l homonor-
phism l'run II into I . in otner words, an
interpretation I |o llerbrond-like if and only if
for every pair of alctinct terms t, and t

(made up of tlie «iven functions) the elements in
I corrcKDondimr to t nnH t„ are distinct. corrcupondint; to t. and

Now, consider the followinc problem: "civen
an Interpretation for a uct of function and
predicate symbols, of which at lea:it one is a
uero-ury {•unction, dctcnntni! if the jnterprctatinn
Is not llcrbraiid-likc. If the interpretation is
not llerbrand-like then halt with no output, else
diverge." Thla problem is inherently non-IIerbrand
in nature since a schema that solves this problem
must diverge for every Herbrand interpretation.
But for certain other interpretations the schema
should halt. A schema with equality tetts that
solves the stated problem is presented in
Appendix A. .

The problem presented above is an abstract
model closely related to certain problems In real
life programming. As an Illustration, consider a
directed graph (with an identified root node) in
which each node has two identified pointers leading
»M?"«1*" Pointers may lead to a terminal node

NIL . The problem is to determine whether or not
the given graph is a tree. This problem may be
modelled by the above probier: with two monadic
functions representing the two pointers, and with
the difference that the search for the equality of
two "terms" Is conducted not for the entire set of
all terms, but for those terms not representing
NIL. The correepondence is that the interpretation
is Herbrand-like for this set of term« if and only
if the correspnding graph is a tree.

Another related problem is that of determininc
If a given list is circular. In this problem, too,'
the explicit use of equality In a schema model of
the computation represents a more natural approach
than the treatment of equality as an interpr»ted
predicate.

While the main interest in equality tests
stems from the fact that programmers frequently do
use tests of equality between variables whose
values are data elements and these tests are often
of a non-Herbrand nature, equality tests find some
interesting applications in problems that are
really Herbrand in nature. We give two examples
below.

Example j: Translation of flowchart Schemas with

Counters

The recursive schema

F(x) - if p(x) then F(F(f(x))) else f{x)

can be translated to an "impure" flowchart schema
by introducing a counter. It can also be trans-
lated to a rather horrendous flowchart schema
wluhout any explicit counter (Plaisted (1973]).
H.wever, the use of equality c.'ves a relatively
simple flowchart, schema equivalent to the above
while retaining the advantage of havint; a "pure"
schema (all functions and predicates being left
uninterpreted). Details are presented in
Appendix A.

Example U; Efficient translation of linear

recursive Schemas

Consider the recursive schema T :

F{a) where

F(y) - if p(y) then g(F(f(y)),y) else y .

Let I be an interpretation of T for which

there exists an n , n > 0 , such that f^a) •

FALSE and for all k < n , ^(a) = TRUE . The
output of the computation <T,I> Is tb« term

C(g(8{ •••g(iJ1(a),fJ,*1(a)) ..., f^a)),^))^) .

For usual iraplanentations of recursion the
computation of the Interpreted schema <T,I) takes
time (the number of operations on data structures
perfomed) and space (the number of values stored)
both proportional to n . The recursive schema
T can be translated to an equivalent flowchart
schema using a fixed memory size (number of
variables) and time proportional to n*n . Using
equality tests, however, the time can be brought

iom to some constant times n^1+c' , where E is
any arbitrarily small positive number. Details of
the construction are given in Append!}: A. For
further discussion of this topic, see Chandra
[1972a].

3. Decision Problems

rfe consider the following decision problans
for classes of Schemas:

(a) The halting problem — to decide whether a
given schema in the class halts on every
Jnterpretaticn.

(b) The divergence problem ~ to decide whether a
given schema in the class diverges on every
interpretation.

(c) The equivalence problem -- to decide whether
two given Schemas in the class are equivalent.

(d) The inclusion problem -- given two Schemas A
and B to decide whether A includes B , i.e.,
for every interpretation either both Schemas halt
with the same output or schema B diverges.

(e) The iconorphism problem — to decide whether
two schanas are isomorphio to each other. (Two
Schemas are said to be isonorphic, or opera-
tionally equivalent, if the sequences of
statements executed by both Schemas are exactly
alike for every interpretation.)

(f) The freedom problem — to decide whether a given
Echema in the elaEB is free.

(g) The translation problem -- to translate any
schema in the class to an equivalent free
flowchart schema (usinp, any number of
variables).

It should be noted that the translation problem
is not strictly a decision problem. We include it
in this list, however, because it ".s an interesting
problem closely related to the others.

All these qucLtlono can be answered in the
arnmiativc for the (lass of lanov Bchcmaa which
coniiietE of one-variable flowchart Schemas usiiiQ
only monadic function and predicate constants
(lanov UiXO], Hutledcc [19tJ4]). In view of this
it is somewhat unexpected that the addition of
general equality tests to lanov Schemas renders all
these decision problems unsolvablc. On the other
hand, wc show that tfem problems for lanov
Schemas extended even to nonmonadic functions and
resets but with limited equality tests are
solvable.

It should be stated that for all "conventional"
Schemas, i.e., all Schemas mentioned in this paper
and in earlier works, the following problems are
at least partially solvable:

(a*) The halting problea •• to decide whether a
given schema in the class halts on every
interpretation.

(b») The non-divergence problem -- to decide
whether a given schema ever halts,

(e*) The non-isoreorphism problem -- to decide if
two Schemas are not. isomorphic to each
other.

(f) The non-freedom problem --
given schema is not free.

to decide if a

The notable exceptions are the equivalence
and inclusion problems. In general, the equiva-
lence and inclusion problems as well #E their
negations are all not partially solvable.

The assitjTiticnt depth ||t(y)|| of a tewn
t(y) is defined to be the number of cannon sub-
terms in t(y) excluding y itself. By conven-
tion, for a constant term t() , |lt()|j = 0 .

The depth |t(y)| of a term tly) is the
maximum depth of nesting in the term, and la
defined by:

|t()| =0,

|y| - © .
\t{t1,tz....,tn)\ =max(|t1|,...,]tn!)n

Note that for monadic terras ||t|| = |t| , and in
general M < H| • A few examples illustrate
this point. In the following table

(a) stands for t(y) ;

(b) stands for common subterms of t(y)
(excluding y itself);

fc) stands for |lt(y)|| ;

(d) stands for |t(y)| .

(a) (b) (c) (d)

y 0 0
f{a) 0 0
f(y) f(y) 1 1
f(g(h(y))) h{y);Ch(y);fgh(y) 3 3
f(£;(a,y),g(a,y)) g(a,y) ;f(g(a,y), g(a,y)) 2 2
f(y,L!(a,y)) f(y,g{a,y)) 1 2

5.1 Notation

We use tne symbols

(1) a,a1,a2,... to represent individual constants

(2)

(3)

(or zero-ary functions, if you will),

to represent program variables,

to represent functions, and we

use

p,P1,P2,... to represent predicates.

y.y^yg»

The set of terms is defined by the smallest
set containing a's , y's and closed under the
following operation: if

and f
1' 2' '

,t are terms, n

Wh'
is an n-ary function symbol, then

is also a term. ,..,tn)

We use the notation t(y ,y0,, • ,yn) to

represent that y^y. .,y are the only variables '2' n
that may be present in t . Thus a term t(y)
may or may not contain the variable y , but
contains no other variable. A term t() indicates
therefore a constant term, that is, a term that
has no occurrences of y's at all.

Given a nonconstant term t(y) , i.e., one
containing the variable y , a common subterm
t'(y) of t(y) is one such that if every
occurrence of t»(y) in t(y) is replaced by an
individual constant then t(y) is reduced to a
constant term. Clearly the terms y itself and
t(i') are common subterms of t(y) . Also, if
t^y) and t"(y) are common subterms of t(y)
then t^y) is a common subterm of t"(y) or
vice versa.

3.2 Solvable Classes

Consider the rather general class S, of

flowchart schemas with one variable. Schemas in
S. contain the following statement types (L, and

Lp are arbitrary labels In the Jefinitions below):

START statement: STAKE
y-a.

Final statements: HALT or
LOOP

AECi(;nment statement: y - t(y)

Prodioate-test St.: if p(t1(y),...,tn(y))

then goto L1

else goto L,,

Equality-test st.: if Vy) = t8(y)
then ^oto L.

else goto L„

The equality tests allowed must, however, satisfy
the condition that either t (y) or t„(y) is a

constant term, or else both |jt,(y)|| and ||t (y)||

are less than or equal to 1 .

T1IE0RKM _1 (Solvtibility o? S.) . For the class S,

1(a) the halting problem is solvable

1(b) the divergence problem is solvable

1(c) the cquivalmcc proülom is solvable

l(il) the inclueion problem is solvuble

1(c) the icomorpliism problem is solvable

1(f) the freedom problem is solvable

1(G) any scliema can be effectively translated to
an equivalent free schema (with the addition
of extra program variables).

This theorem includee as special cases the
results of lanov [lofoj, .iutltdge [I96I»], and also
recent extension« by Kaieli [private ccnraunicationl.
and Garland and Luckham [1971].

As a special case, the problems (a)-(g) are
solvable for the class of 1-variable monadic
Schemas allowing resets and equality tests of the
forms:

♦iO'V5 » y = t() , y ■ ^(y) , and f^y) ,f (y) .

Consider, next, the class Sg of Schemas,

similar to the class S1 , but with a change in

the form of equality tests allowed, viz. the
equality test statonents allowed are of the form:

i£ t1(y) - t2(y) thai goto Lj e-'se Coto I. ,

but this time the restriction is that ||t (y)l| =

l|t2(y)ll •

THEOREM S (Solvability of S..^ :

Problems (a)-(g) are solvable fcr the class

As a special case, the problems (a)-(g) are
solvable for the class of 1-variable monadic
Schemas allowing resets and equalitv tests of the
form:

Vy) = t2(y) where jt^y) | = |t (y) | .

5.3 Unsolvable Classes

It should well be asked why we have the
"strange" restrictions on the form of equality
tests above. The answer is that even slight
generalizations of the restrictioi fl ebove yield,
astonishingly, classes whose problems arc unsol-
vable. We demonstrate this on two classes.

C' '.sider the class a. consisting of one-

variable y , one constant a , no predicates «u&
only monadic fi-.nction constants. Statements in
cchomas of S are of the forms:

START statement:

Final statements:

Assignment statement:

Equality-test St.:

START
y - a

IIA1T or
LOOP

y - My)

S3 differs from S1 in tbat nonconftant

tei^s of depth 2 are used'in Quality tests; and
it differs from a^ in that ten„8 te8ted for»

equality do not have the same assignment depth.

glt:0REM ^ (Unsolvabilitv of s) , For the cla68

S, : -^

3(a) the halting problem is unsolvable

3(b) the divergence problem is not partially
solvable <-

3(c) the equivalence problem is not partiallv
solvable

3(d) the inolufion problem is not partially
solvable

3(*) the isomorphism problem is not partiallv
solvable

3(f) the freedom problem is not partially
solvable

3(G) there exists no effective translation to
equivalent free scheraas.

«. 4. lZr the Sake of comPletenesB we should mention
ttat the nonequivalence and the noninclusion
problems for this class too are not partially
solvable. Of course, the halting, nondivergence
and nonlsomorphism problems are partially solvable,
which follows from the general result mentioned in
the earlier parts of Section 5.

We introduce next the class S^ of 1-variable

monadic schei-as similar to S, but with the

difference that equality tests allowed have the
following form:

if y = t(y) then goto L else goto L

where 1 < |t(y)] < 5 , i.e., tests may have any of
the forms:

y - ^(y) ,

y ' VVy))

y = Wyy)))
or

if f,(y) = ^(fjy))

then goto L.

else goto L0

TirROREH Ij (Unsolvability of S,) :

Problems (a)-(c) for the class S, are
unsolvable. *

A class of echenas is said to be solvable if
its decision problems (a)-(e) are solvable;

^i^arly' ? ?1?SS iE 1-lnE0lvable if its decision
and

j.

>, and S, are unsol-

vable. On comparing these classes it is clear that
there is a very sharp demarcation between classes
of one-variable schemas that are solvable and those
that are unsolvable, depending on the form of
equality tests allowed. It should perhaps be asked
how many function symbols suffice to render a class
unsolvable. It can be shown, for example, that for
the ctass S, , ,„ereiy U functlo.is are sufficient.

problems ^a)-(e) are unsolvable. Classes S,

30 are sol .■able whereas S

it is nore iiitorcctüin to note, however, that
tlic««.- function cyiiibo.li: can be "coded" uoint; only P.
llinction symbols BO tliat cchemnB with one variable,
two IXuiotiojir mid);ciu-ral"Tq^ality tests, i.e.,
U-Kte or tlic rom t^^fy) ^ t..fv) , arc utiEolvable.

Co rar we have restricted our consideration
to aclicmas that have only one variable. The reason
is obvious: one-variable Schemas provide the most
intcrcatinu solvable classes. When more variables
are allowed, even a very i'ew features tend to make
the schanas uncolvable. For example, cchemas with
two variables, two functions and tests only of the
£S5!L y4 ■ f(y7j are unsolvabiel

It is (jven more interesting, though probably
not surprisinc, that schemas with a sinßle function
too are unsolvable; for example, the class of one-
ftmotion schemas havim; t--sts only of the form
y. ■ y, is unsolvable (^ variablpK gnffifi. in

this case).

The proofs of these secondary results are
also presented in Appendix B.

■*• Appendix A — Detailed »ixamples

Kxamplc 0: A llerbrand schema with equality

Not all Schemas that use equality tests are
non-llerbrand. Consider, for example, the schema

START
yl *" y2 *" a;

L: i£ ViV]) then

if p(y0) then

bcL;in

yl - f(yl);

y2 - f (y-,);
goto L;

end

else if y. - a then IIALT else LOOP

cJ^c 11 >! ■ y« then BAM else LOOP .

This is a llerbrand EChema because the equality
tost y, = y„ rxxct always be true, and tUo

equality test y. ■ a can never be entered. The

riven schma is hence equivalent to tue followin;'
rchema, which has no equality test.

START
y • a;
L: i£ P(y) then

bef;in
y - f(y);
■joto L
end

else ;;ALT.

The following schema is also oquivalo.-.t to t::e
above Schemas, but it is a non-Herl-rand schcr-ia
because the LOOP statement in it can never be
entered for any aerbrand Interpretation. The
scnema is, liowover, not inherently non-Herhrand.

START
y - a;
L: if p(y) tlien

if y ^TTy) then LOOP
else begin

goto L
end

else HALT .

Example 1: Inverse of a unary function

For simplicity we assume that the only unc-
tions are a single zero-ary function a , the given
unary function f and a binary function g . The
possible terms are therefore:

x , a , f(x) , ü(x,x) , f(a) , g(a,a) , g(x,a) ,

3(a,x) , f(f(x)) , ...

The schema for any other set of functions is similar
to the one for this particular case.

Symbols o ,c ,c, stand for counters.

Strictly, the only operations allowed on counters
are adding and subtracting one, and testing for
zero. For convenience, however, we will also allow
other ctatemet.ts such as c.<-0, c.<-c., and

tests like c = c , as it is clear that these

operations can be performed using only the legal
operations and additional counters.

(1) -- START
A[0) ~x;
c1 -0;

{?-) - c2 - 1; A[c.] - a;

ii) — REPEAT: y - A^];

(1») -- _if f(y) = x then HALT(y);.

c, -cL5+l; A[c2] - f(y):

c2 »«j+ll A[c2] - e{y,y);

c5-cl;

while c2 / 0 do

beLun

C2 - c,.;+1; Atc21 '" «(Afc;]»y)j
8a - o2+l; A[cJ - 8(y,At0j))j

mi;

(5) --
'1 ^l1'
•oto REPi'iT

(-'))
After the initialisation phase (lines (1) to

AtO) • X , A[ll = a , 8- • 0 , 8« » 1 .

After oor-.pletin' one pass through the outer loop of
the pro-ra.T. i'lines ;.) to (5))

A[E] - f(K) , A[J] = c(>:,x) , 8X - I # ea • 5 I

ar.i after a second pass

KV 1 ■ f(a) , At5] Jß-,*) ,
■'■■[■'] - g(x»«) , A(7] - .3(a,x) , ^ « 8 , «a • 7 ,

Vne aitiürithu worl-.ü eis I'üHOWB: two pointers c.

iind ü^ rorcri-Mico the array. A[o1] reprecents

the "current" va.'.iie. If tlic cui-rcnt value is not
the inversi!, as detcrTiinud by lino (ti), it is
ooinpoccJ with valucc prevedin^ it in the unumora-
tlon by i'uniition applications, and the nev values
obtuinrd ore added to the array.

It can be shown by induction that the process
of enumeration generates and tests each possible
term exactly once. This means tliat the inverse
will be found if it exists. The point at which
tne test of the Inverse is made could be changed
to effect time efficiency but without altering the
main features of the program.

Example 2: llerbrand-like interpretations

We assume that the only functions are a sin-
gle zero-ary function a , a unary function f
and a binary function g . Therefore the sot of
terms includes

a , f(a) , g{a,a) , f(f(a)) , g{f(a),f(a)) ,

g(a,f(a)) , ...

The required schema is

(1) -- START
A[0] -aj

(a) -- c •- c
1 2

(i) — REPEAT:

while c. j> 0 do

(I«)—1 begin

% - »If*1!
if AlcjJ = y then HALT; ,

end;
l_ ,

c2 -c2+l; A[c2] - f(y);

02 "c2+1; Atc2J " tfoW)l

while c, /E 0 do

becin

c, i. Cj-1;

C2"
end;

c^l;

c2+l; A[cyJ - c(A[c3],y);

c^l; A(c2] - (;(y,A[oJ);

Kxainplo 5; Translation of flowchart Schemas with

Counters

The recursive schema

F(a) where

F(y) - if p(y) then r-{K(f(y))) else f(y) ,

can be translated to a flowcharf schema with one
program variable y and one COUJ ter c .

START
y - a;

(1) - c -0;
while true do

if p(y)
then begin

y - f(y);
(2) - c - c+1;

end
else begin

y-f{y);
(5) -- if c = 0 then goto DONE;
CO -- c <- o-l;

end;
DONE: IlALT(y) .

Note that the test " c = 0 " above is not a test of
equality between two data structures but rather
between an interpreted variable, i.e., c , and an
interpreted constant, i.e., 0 .

The corresponding equivalent flowchart schana
with equality tests instead of counters uses three
variables:

y plays the same role as the variable y above,

z effectively siniulates a counter, and

w is a temporary variable.

The idea behind the method is that the variable z

Elnulates a counter, where f (a) stands for the
intotjer i . Therefore, the statement z •- a
stands for the statement c •- 0 , z - t{z) stands
for c r- c+1 , and the statements
[w t- a; while f{w) ^ a do W <- f(w); z •- w] stand
for c •- c-1 . Wc have to bo careful, however.

The terra f (a) stands for the integer n , n > 0 ,
only if for no two distinct numbers i, j < n are

the tens f (a) and f (a) equal. Interpreta-
tions for which the counter is required to count up
to an integer n where there exist i,,i <n ,

i / ,1 , such that f (a) ■ fJ(a) are called looping
IntorpretatJons. It can be shown that for looping
interpretations the given recursive schema never
halts. The Fsquircd program schema is therefore
easy to construct:

(5) -- goto RKPEAT

This program is quite similar to the previous
one in the manner of enumeration of terms. The
fact that each term is generated exactly once is
used in nakino the test (It) to check if a value
is repeated.

(1J

CO

.".TAUT
y - Ai
3 - a;
while ' .tub i iü

il' r(y)'
then bctiin

r y - i-(.v);

w -a; 'check
i wlrl.lc w / ^ do Ifor a
i If w * r(x) 1 looping
i tUon UOP inter-
i "Iso w - ffwl: Iprcta-

L „,
if w = f(x) then IXJOP^ition

z .-f(z);
end

else bo^in
y - f(y)i
if ^ = a then uoto DONE;

while f(w) ^ z do w - f(w); I

— lL 1
end;

DONE: HALTCyTT

Example k: Efficient translation of linear

recursive schema-

Consider the recursive schema T :

F(a) where

r(y) - if p{y) then t;(F(f(y)),y) clee y .

Let I be an interpretation of T for which
there exists an n , n > 0 , such that

^(a) . FALSE , and fk(a) ■•= TRUE for all k < n
The output of the computation of <T,T> is

8(4S(ß(•■•R(fn(a),fn-1(a)) ...r(a)),f(a)),a) .

The computation of <T,I> takes tri.e and
space proportional to n -- for usual iinplemonta-
tions of recursion. The recursive scheua can be
translated to an equivalent flowchart schema T'
ucini; a fixed memory size (number of variables)
such tnat the computation of <T',I> takes tiro

proportional to n , aas followt;

CTART
y - a;
whJlc P{y) do y - f(y);
■■'■ - a;
wljilc p(:-:) do

bo,;in

h - *«
z - a;
while pCx^ do

be^in
Xj - t{*x)l

B -ffz);
end;

end
HALTCyT •

f'Va)

f "(a) i > 1

i'-V)

Ucinc equality tests, however, the tlric can

be brought down to n1+f whore € is an arbl-
trai-ily small number. We first describe an oquiva«
lent flowchart schema with equality tests with a *
time bound of ivv' .

Intuitively, the idea is the following. The
earlier fJowchart schema spends most of its time
trying to find the inverse of the function f

(i.e., civen fV) , to find fi"1(a)) — though
this operation is somewhat hidden in the program.
We can speed up this by planting a value at a
"distance" of about /n from the end
and compute inverses from this planted value.
Time taken to find the square root is of the order

of n '■" , averace time to find the inverse is
1/2

n " (done n times) and time to reset the

planted value is of the order of n (done n1/2

times). in general, by planting (k-1) values
(instead of Just one) at distances

,Vk . 2/k _ 5/1, ,(k-l)A

from the end we get a time bound of n1*^1/1^

START
y " a;

(1) — while p(y) do y - f(y);
(3) — if y = a then HALT(a);

x - f (a);
(;> -- CHICK: y-L -yj ~ a;

wnile y1 ^ x do

while y„ ^ x do

Ijegin

y2 " f(y2) '•
y3 *■ f(yj);

if y^ = y then ^oto FOUND;

end;

CO

(5)

(')

end;

'■ - f CO ;

.-oto CIIHCK;

i-OUTTO: z - y;
.''-,, - x;

REPEAT: x - a;

while >:,, / | do

bo./in

end;

ttijl

- x . ^(a)

en •- wlülu a / ;•- do

iiQi'.in

Mkk %*}) t*dox,~ f(X.);

(3) -

(9) --

8 - -V
end;

TEST: if z = a thai ItALT(y);
xa - a' JÜ1ÜS {*o / 2) and (x2 / x)

dox -f(x0);

JQto RKPEAT

Mne (1) detects if ther« exists an n > 0

y? tfn ^S : F^E ftnd ^ ' ™* «»
«««! ! i such *" n doe8 not «ist the
prognun loops forever which is the desired opera-
tion. If n exists it foliows that for all
i,J < n , if i / j then fi(a) ^ ^^j # At

this point y = f^a) .

(li**1^ n T,
0

the P1"0^*11 halt« with output a
(Imc 2). if „ > 1 the CHECK loop soonent of
the pro-am from lines (}) to (k) finds the

This if ^nSiKiVe intCeer m Such that -n*™ > n . ihis is done by successively tryine larCer and
larger values i= 1,2,5,... for m until one'is
fend such that in > n . This is the required
value for m . We use the variable x to store

the value of f^a) and the variable y to

"count" up tel«i by successively takinG values

a,f(a),...,f (a) . The final value of x is

£■{•) and it remains unchanged for the rest of
the program.

Kxecution of lines (5) to (C) „ow causes the

variable x^^ to be "planted" at fB*B(x) . The

while statement between lines (?) and (3) consti-
tut es the main part of the profrrm. The variable
y takos on values in the sequence

• 'Ad •.•i:(f"(a),fn-1(a)), ...),l•n-,T,
(a))

On exit from this while-loop the value of / la

Lines (9) and (5) to (C) are then used to

roset the planted value to f"'^) and t),o
process la repeated. Alter It, the planted value
is reset tc f**M , and co on. A ^ caso

ia encountered when the Integer correcpondinr to
« beoor,eB less than m . m this caso, the nort
planted value should be simply a , and hence the
VM ol line (9) instead of cmply retting x - x

5. Appendix B — Proof of Theorma < '

We use the terminology f^ 3 T2 to mean the

scheinas ^ and Tg are equivalent, and T
to mean T, includes T,

l0h

Proof of meorem 1 (Colvability of S)

Ma)/(b)f(e)-- The solvability of the halting,
divergence and equivalence problems follows from
the solvability of inclusion:

(a) Given a schema T of S1 , T halts if and

Ä*f SmJ ?i V^eTe H rePreBents the schema
mmi BAM(«)] that always halts with output a.
and r is the schema T with all HALT statements
changed to HALT(a) .

(b) Given a schema T of S;L , T diverges if

and only if L D T , where L represents the
schema [START j WOP] that always loops,

(c) Given two Schemas Tn and T of S

if and only if f^ 3 T2 and T8at.

iigll We give below only the intuitive idea
behind the proof of solvability of the inclusion
problem. Given two Schemas T and T of S

to decide if T D I,
1 *8 " 0l

an automaton is constructed

and T in

and T2 both hal^

halts and T,

that simulates the computations of E

parallel. The input tape of the automaton repre-
sents an interpretation for t, and T . The

input tape is rejected if f

but with different outputs, or if T

diverges, under the interpretation corresponding 1

to the input tape; otherwise, the tapa is
accepted. '

To describe the operation of the automaton we
firct introduce the notion of the "specification
state" of a variable y . The specification state
represents the outcomes of all possible tests that
could be perfonwd by a schema without changing the
value of the variable y (and using terms no
^lar .-or" than the "larcest" term used in the Schemas
T, and i'). The automaton simulates the corapu-

tai ions of Tj and T, not Just for the .".aln-line

computation, but for a larL:e number of "instances"
of ti:e variable y . There 1« one instance for
eacn aefiignment statement and each constant terra
(no larger than the latest tern). Tlie computation
of an inctanco (for an astigrunent statement and a
tens; represents what the schema would really do if
Ita main-line variable happened to equal that
constant term after that aBSlgnmcnt statement.

The 1 omputation on each instance is kep* in
step, and the automaton heeps track of which
instances have equal values at each step. This
cnahlec the uutomaton to doxect whether the input
tape really represents a feasible interpretation.

The reason that this specification state
approach worl-.s with limited equality tests is that
the finite specification state carries sufficient
information to allow it to be updated. This is not
true for general equality tests, «.a, in the

cXttcses C, and ü^ , If a specification ctatc

were to carry all information ncceccary to update
it, tlio amount of information would crow without
bound as the computation proceeded.

M?)! The proof of iEomorphism io similar to the
proof of inclusion, except that the automaton not
only keeps track of which instances are equal in
value at each step, but also which equal instances
have an isoraorphic hJ'tory. The automaton can
then detect if for any input tape the computations
of the two Schemas are not iscmorphic.

l£f}_! Freedom or nonfreedora is detected by the
algorithm 1(g) that translates a given schema in
S1 to an equivalent free schema; 'if ever a test

statement is detected for which some exit is not
feasible the schema .s not free, else it is Tree.

Ug): We cive below a short outline for the
translation of a given schema T in S, to an

equivalent free schema T, (using several
variables). x

A "partial specification state" is like a
specification state but with the possibility that
the values of certain predicate and equality tests
may be unknown. The schema T has a (lar^e)

number of variables, one variable for each assißn-
ment statement and each constant term (no larger
than the largest term used in T).

The schana T, begins by assigning all vari-

ables their corresponding initial values. The
schema f. has a (large) number of "chunks" of

statements. Each chunk updates the variables.
This corresponds to one step of the automaton in
the proof of inclusion. This updating can be
performed without introducing any nonfreedon.
Each chunk is associated with the following infor-
mation (line (lii) is unnecessary for this problem,
but it is required to solve the freedem problem).

(i) The statement in T corresponding to each
variable in T, •

(ii) Which variables have equal values.

(lii) Which pairs of variables have the property
that they both would have tested the came
value if we hadn't explicitly avoided that
(i.e., if both variables are "entered" by
the main-line computation, nonfreedom would
result).

When updating is performed, no predicate or
equality test is introduced whose outcome is Jjiown
from the informatior. corresponding to the chunk.
Loops are dctectpd as before; and some variables
may beccme "inactive" either by looping or halting.

Proof of Theorem 2 (Solvability of G,)

The proof of Theorem S is similar to the proof
of Theorem 1 except that the formal definition of
the specification state reflects the different
kind of equality tests allowed.

Proof of Theorem 1 (Unsolvability of S)

iishläh Wc define a class S of Schemas having
two variables y.. and y

consist of the following:
and whose statements

Start statement: START

Final statements:

Test statement:

J'o - a;

HALT or
LOOP

if p(yi) then goto L.

else goto L. ;

It was shown by Luckhara, Park and Paterson
[1970] that the halting problem for the class S

is unsolvable, and that the diver^eiue problem is
not partially solvable.

To show the halting problem for S, to be

unsolvable we reduce the halting problem for S
5

to that for Sj ; that is, we describe an algorithm

that takes any schema T. in the class

input and yields a schema T\ in the class

such that Tl halts if and only if T halt

T as input and yields as output

>, such that T"

Similarly, to show that the divergence problem for
3^, is not partially solvable we describe an algo-

rithm that take

a schema f, in the class S

diverges if and only if T diverges. We will

unify the construction for the two cases by con-
struct inj for both cases a schema T, in the

class S^ but auijTnented with a special final

statement called the REJECT statement:

REJECT statement: REJECT .

The REJECT statement signifies that the inter-
pretation is unacceptable and is rejected. Loosely
the idea is the following. There exists a map from
interpretations of T, that are not rejected onto

the Interpretations of T such that the computa-

tion for T, under an interpretation halls if and

only if the coTiputation for T_ under the corres-

ponding interpretation halts.
Mow it is clear that if we replace all REJECT

statements in T, by 11AIT statements to get T1,, ,

then T, halts on every interpretation if and

onl.v if T halts on every interpretation.

Similarly, if we replace all REJECT statements by
LOOP statcr-.entr, to set T'; then T',' diverges then T!

on every interpretation if and only if 5,

di/erges on every interpretation.
'■n a achona Tr in

in

we construct the

correspondin,; schema T, in S. (with the addi-

tion of REJECT statements) as follows. We use the

10

vari.-ibl« y of T, to rvprcsent. the latost

y, <■■• y, . The

as in T,-

varlablo tu^trd in T, , I.e., ,

plays the saine role in T. iViiictlon t'

Wo UEO a now function
and tests of the. form

IS called a "tRst function";

if p(y) then ... else

in Ve , will take the form

li(e(y)) then ... else

5

i£ aiv)

in T-, . In addition we use two "control" func-

tions f. and f2 . Their roles are the followinc:

if y stands for y2 (of S) then f (y) will

equal the value of f(y1) at that instant in the

computation unless, of course, a REJECT statement
is reached earlier. The role of f„ is analogous,

i.e., if y stands for y then f0(y) will

equal the value of l'(y0) .

The schema T, simulates a computation of

Tj as follows. In the diagram below the elements

a , f(a) , f(f(a)) , f(f(f(a))) are represented
by contiguous squares from left to ri^ht. We
superimpose on this diacram the computations of
both T.- and T,

the computation of Tc

Suppose, at come instant in

y, is at point A ,

and y2 is at C , and suppose y is beii.g

"read". T, makes certain that the f, pointprs

from the squares scanned, point to the ri^ht of
y,, . Suppose that we continue to "read" fror: y

until y reaches point B vhere the sohena 1r

starts "reading" from y2 . Ty checks that the

1' pointers from the squares scanned, point to

the right of B .

fTTTT

±L
push y1 —»

(T. roads y.)

nu

push y,, >

(T, reads y)

Wo are now in a position to descriV' the con-
struction of t, . Without loss of generality, we

will uEsume that in T5 the first test statement

tests the variable y . T, will effectively

contain 2 copies of T except there is only

one start statement. Wo will call these copies A
and B . We will label statements of T,. by

numbers 1,2,5,... . The corresponding statements
in Tj will be labelled 1-A , 1-B , 2-A , 2-B ,

i-A , 3-B ,... .

(i) The start statement in T^ is

START

goto i;

Reproduced from
be»! availabla fnPy

The corresponding statements in T, are:

START
y - a;
if f(y) ^ f2(y) then REJECT else goto i-A;

Note that the test f(y) ^ f (y) is not

strictly an allowed statement. We use this
form for clarity: it can really be
"simulated" by the statements:

if f(y) /< ^(^(y)) then REJECT;

if fg(y) / ^(^(y)) then REJECT

else goto i-A;

(ii) For any test statement i in T , if i is

of the form:

i: :>'! - tiy^i
if pt'y,) then coto j else goto k;

the corroEponding statements 1-A and i-B are:

i-A: if fa(y) / f2(f(y)) then REJECT;

y - f(y);

11 ß(y) ■ 8(ß(y)) then i-oto j-A
else f;oto k-A;

and

i-3: 1| f(y) /■ f2(f.(y)) then RE.TECT;

y •- fa(y);

il S(y) -; fifAy)) then goto j-A

else j.-oto k-A;

(iii) :'or any test statement i In S of the form:

i: Vi3~f(y2)i

i_[p(,v„) then ,-oto ,i else goto It;

i-A and i-B are similar to the above,
oMc-ept, one has to interchange f. with f,.,

and A with B .

(iv) IIAI.T and LOOP statements remain unchanged.

This copipletcs the coiiEtruction.

11

Lin: nuin rciicon t-jint Um null WH '1'., caii

• ibuiafc« l,l.e cüf^putu!,!«.!! or 'I' le that caoli f, .
9 i.

f, "poinLur" |8 clK.üi.od at mout onüe froin i-uoli

iquare. ir jwintcrs were to ix- ciieckeJ twice and
it turned uut that they were required to point to
mTcront vn.lues tiiere mijit exist no intei-preta-
Uon miUtj/tBC tUt« condition — the reuult would
he tliat aJl interpretationu of T, woiad be
rejected. -5

2i£i: The non-partial eolvability of tlie equiva-
lence problem followc directly frcm the non-partial
eolvability of the divergence problem (Part (b)),
since a program schema in S,, diveraes if and

only if it is equivalent to the schema;

START
y - a;
LOOP .

^iSÜ.: The non-partial solvability of the inclu-
sion problem follows immediately from the non-
partial solvability of the equivalence problem
since 71 s T2 if and only if ^ o T and

T2 o T1 .

M«0! The non-partial solvability of the isomor-
phism problem also follows directly from the non-
partial solvability of the divergence problem.
Given a schema T in the class S , construct a

new schema T» also in S^ obtained by replaolng

each 11A1T statement in Sj by the statements:

y - f(y);
HALT .

Then T and T' are isomorphic if and only if
T diverges.

Hf): The non-partial solvability of the freedan
problem is shown by reduction of Post's Correspon-
dence Problem for nonempty strings (PCP) to the
noni'reedom problem for Schemas in S . The proof

follows alone lines similar to a related proof in
Paterson [lyfif] with the mechaniEm for effectively
simulating two variables while usintf only one (as
described in the proof of i(a),(b)).

He): There can exist no effective translation
to a l'ree schema since if there did exist such an
algorithm we could decide whether or not a (;iven
schema of S, halts since the halting problem for

free Schemas is trivially solvable.

Proof of Theorem U (Unsolvabllity of G.)

The proof (joes alony lines quite similar to
tht proof for Theorem }. We first define a subset
!:r of the class of Schemas r,v . S, , like S ,

has two -.-ariables jf, and y0 , one function sym-

bol f , and one predicate symbol p , However,
Sr has the constraint that in any path trirou^h

a schema of Bg , after each statement that tests

the variable f. there must be either one or two

laiitctnontt that Lest y, (followed by u final

Btaterauit or unoLlicr test of y) -- note the for«

uf the test statanciit of S. deflnod in tlie proof
ofi(a),(b). The haltinß and divergence problane '
of S(> can bo .hown to be unsnlvable, and the

talting and divergence problems of S^ can be re-

duced to those of S^ . This implies the unsolva-

bllity of problems (a)-(e) and (g) for S. . The

freedom problem (f) can be shown to be unsolvable
on lines similar to the proof for 3(f), i.e., by
reducing PCP to the non-freedom problem and effec-
tively simulating two variables while actually
using only one.

Proofs of Secondary Results
In the following results the number of func-

tions does not include ..he individual constants.

(!) Schemas with One Variable. Two Functions and
General Equality Tests

The class of flowchart Schemas with one vari-
able, two functions (no predicates) and general
equality tests is unsolvable.

If completely general equality tests are ■
allowed it is easy to see that two funccion con-
stants suffice to render the class of Schemas
unsolvuble because more function letters can be
"coded'" in terms of two functions. For example,
in ib we could use only two functions f and g
by making in the construction of T, fron Tc the

3 5
following substitutions: for all terms t
simultaneously substitute:

f(f(t)) for f(t)

ß(f(t))

for

for

for

Cit)

fa(t)

All tne unsolvabllity results go through on
mal'.ini: tMs substitution. Similar substitutions
can be nude to show the unsolvabllity of freedom.

(ii) gcher.as with IVo Variables, Two Functions and
KcLli-ioted Kquali^v Teats

Tnc class of flowchart Echeii.as with two vari-
ables mid two i\inctlons~i no predicates) wlUTtostE
only of .t!io fonn yT I i'(y.) are uncolvable.

Consider the class S,., which is the came as
I

S^ but with the differcnid that there are two

function constants f. aid f0 , and no predicate

constant.
The conputation of any schema T. in S. can

be simulated by a corresponding schema T_ in S ,

obtained by replacing every test statement of the form

y^fiy,);
if piy1) then .-oto L. else goto L

by a test statement of the form

/j - «yji
M y^ - t'Xy/) then goto L. else j^oto L,

12

11 la oaty to coo that te» uny puth, finite or
iRl'init,..', t'nrüiiji f

pretation for which
if tliert- «.'xiats an intcr-

execntoo atatemonts aloiit»

thlo path, Uten tlicre is un intci-pretation for
a; lii ft. txecutcs statement!; along the corres-
pondin,

7
path i-'liiB cctabljchcs the unsolvability

01 (a)-(o) and (g) for the class S ' (note that

the unsolvability of (c)-(e) and (J follows from
the unsolvability of (b)).

1'lJrtlier, the freedom problem too can be shown
to be unsolvable by reducing PCP to it. The
reduction ie related to the corresponding reduction
m Paterson [1967], but to do it v;ith 2 function
symbols we need the additional "cleverness" of
padding each symbol of the PCP with enough "bits"
in order to allow for testing, to effect a non-
deterministic search.

(iii) Sehemas with One Function. Restricted
Equality Tests

Schemas with one function usinp tests nnly
of the form y = y are unsolvable.

 ■!

The halting and divergence problems for two-
counter automata are known to be unsolvable
(Hopcroft and Uliman [1969)), and can be reduced
to the halting and divergence problems for one-
function Schemas in a rather direct rranner. In
the reduction process the only care that has to be
taken is for the operation of incrementing one to
a counter, in which case the schema checks for^a
looping interpretation as in Kxa-nple 5 of Appendix
A. The unsolvability of the equivalence, inclusion,
and isomorphism problems follows from the unsolva-
bility of the halting and divergence problems.

6. References

Ashcroft, Manna and Pnueli [1971] — E. Ashcroft,
Z. Manna and A. Pnueli, "Decidable properties
of monadic functional Schemas", in Theory of
Machines and Computations (Kohavi and Paz,
Eds.), Academic Press, pp. 5-13.

Chandra 11972a] — A. K. Chandra, "Efficient com-
pilation of linear recursive prograjnc",
Report, Computer Gcience Dept., Stanford
Univ. (to appear).

Chandra [1972b] — A. K. Chandra, "Properties and
applications of program Schemas", Ph.D.
Thesis, Computer Science Dept., Stanford
Univ. (vo appear).

Constable and Gries [1971] -- R. L. Constable and
D. flricB, "On classes of pro-ram schemata".
Report, Computer Science De^t., Cornell Univ.
(August l',)71).

Garland and Uickham [1971] — G. J. Garland and
D. C. Luckham, "Program cchomes. recursion
schemes, and formal lan.^aiapes", UCLA report
(June 1971).

Hewitt [1970] — C. Hewitt, "Kore comparative
cnhematolocy", A.I. Memo 207, Pro.icct MAC.
M.I.T. (Aur^st 1970).

Hopcroft and Ullman [1^9] — .7. R. Hopcroft, and
J. D. Ullman, "Formal languages and their
relation to automata", AddiLon-Horley, 19^9.

lunov [I960J - Y. 1. lanov, "The logical schemes
of algorithms". English translation in
Problens of Cybernetics, Vol. 1, Pergareon
Press, New York, igflO, pp. 62-11*0.

Luckhajr,, Park and Paterson [lg70] — D. C. Luckham,
D. M. R. Park and M. G. Paterson, "On forma-
lized computer programs", J. of Computer and
System Science, Vol. 1*, No. 3 (June 1970).
pp. 220-2l»9. "

Paterson [1%7] — M. 3. Paterson, "Equivalence
problems in a model of computation", Ph.D.
Thesis, University of Carabrid^r, England
(August 19^7). Also A.I. Memo Ho. 1, M.I.T.
(1970).

Paterson [I968J — M. S. Paterson, "Program
schemata", in Machine Intelligence 3 (Michie,
Ed.), Edinburgh Univ. Press, pp. 19-31.

Paterson and Hewitt [1970] -- M. 3. Patflrson and
C. E. Hewitt, "Comparative schematology", in
Record of Project MAC Conference on concurrent
systems and parallel computation, ACM, New York
(December J970), pr,. 119-128.

Plaisted [1972] - D. Plaisted, "Program Schemas
with counters", Proceeding: of the Fourth
Annual ACM Symposium on the Theory of Computing,
Denver, Colorado (Hay I972).

Rut.ledge [IQ>%] — j. D. Rutledge, "On lanov's
pronram schemata", J.ACM, Vol. 11, No. 1
(January 19i'l»), pp. 1-9.

Strong 11971*) — H. H. Strong, "Translating
recursion equations into flowcharts", J. of
Computer and System Gcience, Vol. S (June 19711,
pp. 25U-285.

Gcron,; [1971b] -- n. R, strong, "High level
ian-aagec of maximum power", IBM Research
Report.

13

